HORSEPOWER REQUIREMENTS

<table>
<thead>
<tr>
<th>Flow</th>
<th>PSI 1000</th>
<th>PSI 2000</th>
<th>PSI 3000</th>
<th>Pump RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>BAR</td>
<td>BAR</td>
<td>BAR</td>
<td>900</td>
</tr>
<tr>
<td>6.7 L/M</td>
<td>4.6</td>
<td>9.2</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>5.0 L/M</td>
<td>3.4</td>
<td>6.8</td>
<td>10.3</td>
<td>672</td>
</tr>
<tr>
<td>3.0 L/M</td>
<td>2.1</td>
<td>4.1</td>
<td>6.2</td>
<td>403</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

- **Volume**: 6.7 G.P.M.
- **Discharge Pressure**: 3000 P.S.I.
- **Max. Inlet Pressure**: -8.5 to +40 P.S.I.
- **RPM**: 900 RPM
- **Bore**: .708"
- **Stroke**: 1.457"
- **Crankcase Capacity**: 2-3/4 Qts.
- **Max. Fluid Temperature**: 140°F
- **Inlet Ports (1)**: 1" NPT
- **Discharge Ports (3)**: 3/4" NPT
- **Pulley Mounting**: Either side
- **Shaft Diameter**: 1.181"
- **Weight**: 73.7 Lbs.
- **Dimensions with Rails**: 22.20" x 15.04" x 9.84"

INLET CONDITION CHECK-LIST

- **INLET PRESSURE** should fall within the specifications of the pump. These conditions vary slightly from the plunger to the piston pumps.
- Higher pressures require pressurized inlet.
- Optimum pump performance is achieved with a flooded or pressurized inlet, however, negative feed is possible under ideal conditions.
- **INLET ACCESSORIES** are designed to protect against overpressurization, monitor inlet flow, control contamination, control temperature and provide ease of servicing.
- All accessories should be sized to avoid restricting the inlet flow.
- A pressure gauge is recommended to monitor the inlet pressure and should be mounted as close to the pump as possible.
- All accessories should be compatible with the solution being pumped to avoid malfunction.

BY-PASS TO INLET: Care should be exercised when deciding the method of by-pass. It is recommended the by-pass be directed to a baffled reservoir tank, with at least one baffle between the by-pass line and the inlet line to the pump. Although not recommended, by-pass fluid may be returned to the inlet line of the pump if the system is properly designed to protect your pump. When using this method a PRESSURE REDUCING VALVE should be installed on the inlet line to avoid excessive pressure to the inlet of the pump. (REDUCING VALVE SHOULD BE INSTALLED BETWEEN THE BY-PASS CONNECTION AND THE INLET TO THE PUMP) It is also recommended that a TEMPERATURE SENSING VALVE be used to monitor the temperature build-up in the by-pass loop to avoid premature seal failure.

- A low-pressure, flexible hose should be used from the by-pass connection to the inlet of the pump.
- It is recommended to use a minimum 24" by-pass hose.
- On any new installation or during periodic maintenance or troubleshooting, it is recommended that the pressure in the by-pass line be checked to avoid overpressurizing the inlet.

See High Pressure Guide for more information on pump protection and maintenance.