1DX MODELS: 1DX015ELS.MIST, 1DX03ELS.MIST
2DX MODELS: 2DX20ES, 2DX27GS, 2DX30GS
2DX05ELS.MIST, 2DX15ES.MIST,
2DX20ES.MIST, 2DX27ES.MIST
2DX30ES.MIST
3DX MODELS: 3DX25GSI, 3DX27GSI, 3DX29GSI,
3DX30GSI
3DNX MODELS: 3DNX25GSI, 3DNX27GSI
3SP MODELS: 3SP30G1I, 3SP35GEI
3SPX MODELS: 3SPX30G1I, 3SPX35GEI

INSTALLATION AND START-UP INFORMATION
Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only
with the proper selection, installation of plumbing, and operation of the pump and accessories.

SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not
implied that all maximums can be performed simultaneously. If more
than one maximum is considered, check with your CAT PUMPS supplier to
confirm the proper performance and pump selection. Refer to individual Data
Sheets for complete specifications, parts list and exploded view.

LUBRICATION: Fill crankcase with special CAT PUMP Hydraulic oil per pump
specifications [1DX, 2DX, 3DX, 3DNX-5.5 oz., 3SP, 3SPX-10.15 oz.]. DO NOT
RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours
running period. Thereafter, change oil every 3 months or 500 hour intervals.

DRIVE SELECTION: The pump shaft size is 5/8” hollow shaft on “ES” and
“ELS” models, 3/4” hollow shaft on “GEI” and “GS” models, 1” hollow shaft on
“G1I” models. The motor or engine driving the pump must be of adequate
horsepower to maintain full RPM when the pump is under load. Select the
horsepower requirement according to required pump discharge flow and maxi-
mum pressure at the pump! Consult the manufacturer of gas or diesel engine
for proper selection.

MOUNTING: 1DX, 2DX, 3DX, 3DNX, 3SP and 3SPX models are direct drive.
The 1DX.MIST and 2DX.MIST electric models can be mounted directly to a
C-Face motor; the 3SP35GEI and 3SPX35GEI models come with an adapter
plate to mount to a C-Face motor. The gas model comes with an adapter plate
that mounts to a gas engine. Before mounting pump to electric motor or gas
engine, apply PN 6106 antiseize lubricant to pump shaft. Refer to Technical
Bulletin 055 for instructions on removing pump from electric motor or gas
gas engine. To minimize piping stress, use appropriate flexible hose to inlet and
discharge ports.

LOCATION: If the pump is used in extremely dirty or humid conditions, it is
recommended pump be enclosed. Do not store or operate in excessively high
temperature areas or enclosed without proper ventilation. Temperatures above
130°F are permissible. Add 1/2 PSI inlet pressure per each degree F over
130°F. Elastomer or RPM changes may be required. See Tech Bulletin 002 or
call CAT PUMPS for recommendations.

INLET CONDITIONS: Refer to complete Inlet Condition Check-list in this
manual before starting system. DO NOT STARVE THE PUMP OR RUN DRY.

DISCHARGE CONDITIONS: OPEN ALL VALVES BEFORE STARTING
SYSTEM to avoid deadhead overpressure condition and severe damage to the
pump or system.

A reliable Pressure Gauge should be installed near the discharge outlet of the
high pressure manifold. This is extremely important for adjusting pressure
regulating devices and also for proper sizing of the nozzle or restricting orifice.
The pump is rated for a maximum pressure; this is the pressure that is read at
the discharge manifold of the pump, NOT AT THE GUN OR NOZZLE.

Use PTFE thread tape or pipe thread sealant (sparingly) to connect accessories
or plumbing. Exercise caution not to wrap tape beyond the last thread to avoid
tape from becoming lodged in the pump or accessories. This condition will
cause a malfunction of the pump or system.

PRESSURE REGULATION: All systems require both a primary pressure
regulating device (i.e., regulator, unloader) and a secondary pressure safety
relief device (i.e., pop-off valve, safety valve). The primary pressure device
must be installed on the discharge side of the pump. The function of the primary
pressure regulating device is to protect the pump from over pressurization,
which can be caused by a plugged or closed off discharge line. Over pressur-
ization can severely damage the pump, other system components and can
cause bodily harm. The secondary safety relief device must be installed
in-line between the primary device and pump or on the opposite side of the
manifold head. This will ensure pressure relief of the system if the primary
regulating device fails. Failure to install such a safety device will void the warranty
on the pump.

NOZZLES: A worn nozzle will result in loss of pressure. Do not adjust pressure
regulating device to compensate. Replace nozzle and reset regulating device
to system pressure.

PUMPED LIQUIDS: Some liquids may require a flush between operations
or before storing. For pumping liquids other than water, contact your CAT
PUMPS supplier.

STORING: For extended storing or between use in cold climates, drain all
pumped liquids from pump and flush with antifreeze solution to prevent
freezing and damage to the pump. DO NOT RUN PUMP WITH FROZEN
LIQUID (refer to Tech Bulletin 083).

WARNING:

All systems require both a primary pressure regulating device (i.e., regulator, unloader) and a secondary pressure safety relief device (i.e., pop-off valve, safety valve). Failure to install such relief devices could result in personal injury or damage to the pump or to system components. CAT PUMPS does not assume any liability or responsibility for the operation of a customer’s high pressure system.

World Headquarters
CAT PUMPS
1681 - 94th Lane N.E. Minneapolis, MN 55449-4324
Phone (763) 780-5440 — FAX (763) 780-2958
e-mail: techsupport@catpumps.com
www.catpumps.com

International Inquiries
FAX (763) 785-4329
e-mail: intlsales@catpumps.com

CAT PUMPS (U.K.) LTD.
1 Fleet Business Park, Sandy Lane, Church Crookham
FLEET, Hampshire, GU52 8BF, England
Phone Fleet 44 1252-622031 — Fax 44 1252-626655
e-mail: sales@catpumps.co.uk

N.V. CAT PUMPS INTERNATIONAL S.A.
Heveldeken 6A, B-2550 Kontich, Belgium
Phone 32-3-450.71.50 — Fax 32-3-450.71.51
e-mail: cpi@catpumps.be www.catpumps.be

CAT PUMPS DEUTSCHLAND GmbH
Buchweisse 2, D-65510 Idstein, Germany
Phone 49 6126-9303 0 — Fax 49 6126-9303 33
e-mail: catpumps@t-online.de www.catpumps.de

CAT PUMPS INTERNATIONAL BV
Middenweg 186, 3144 KB Scharn, The Netherlands
Phone 31-71-5281541 — Fax 31-71-5281543
e-mail: catpumps-international@catpumps.com

© 2009 CAT PUMPS
PN 30263 Rev C 11709
SERVICING THE VALVES

Disassembly

NOTE: All pump models require one (1) stacked valve kit to repair pump. Models 2DX, 2DX.MIST, 3DX, 3DNX, 3SP and 3SPX contain three complete valve assemblies (inlet and discharge). Whereas, model 1DX03ELS.MIST contains two complete valve assemblies and model 1DX015ELS.MIST contains one complete valve assembly.

NOTE: Discharge and inlet valve assemblies may stay together or separate during removal.

NOTE: Spring retainer may also separate from the seat during removal.

1. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: Use a M19 Hex tool to remove valve plugs on top of manifold.

 Models 3DNX, 3SP and 3SPX: Use a M24 Hex tool to remove valve plugs on top of manifold.

2. Use a reverse pliers to remove stacked valve assemblies from the valve chamber.

3. If the discharge valve assembly separates from the inlet valve assembly, use a reverse pliers to remove it from the valve chamber.

CAUTION: Exercise caution as the reverse pliers may damage the threads in valve chamber or spring retainer.

4. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: The spring retainer may separate from the seat. Remove the spring and valve from the valve chamber. Thread an M8 screw into the seat and remove from valve chamber.

5. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: Separate valve assembly by using the same M8 screw and thread into bottom of seat until screw contacts bottom of valve. Continue threading in screw until spring retainer separates from seat.

 Models 3DNX, 3SP and 3SPX: Separate valve assembly by inserting screwdriver into spring retainer and press the backside of valve until seat separates from the spring retainer.

6. Remove o-ring from each seat and valve plug.

Reassembly

1. Examine spring retainers for internal wear or breaks in the structure and replace as needed.

2. Examine springs for fatigue or breaks and replace as needed.

3. Examine valves and seats for grooves, pitting or wear and replace as needed.

4. Examine seat and valve plug o-rings for cuts or wear and replace as needed.

 NOTE: Inlet valve seat and o-ring are different from discharge valve seat and o-ring. One valve kit required per pump.

5. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: Lubricate and install new o-ring onto large outside diameter of discharge seat.

 Models 3DNX, 3SP and 3SPX: Lubricate and install backup-ring, and then o-ring onto large outside diameter of discharge seat.

6. Place seat on work surface with small diameter side up.

7. Place valve onto seat with concave side down.

8. Place spring on valve.

9. Install spring retainer with deep stepped end over spring and snap onto seat.

 NOTE: Repeat steps 6-9 for inlet valve assembly.

10. Snap discharge valve assembly onto the inlet valve assembly and press into valve chamber until completely seated.

11. Lubricate and install new o-ring onto each valve plug.

12. Apply Loctite® 242® to threads of each valve plug and thread in hand tight. Torque to specifications per chart.

CAUTION: Before commencing with service, shut off drive (electric motor, gas or diesel engine) and turn off water supply to pump. Relieve all discharge line pressure by triggering gun or opening valve in discharge line.

After servicing is completed, turn on water supply to pump, start drive, reset pressure regulating device and secondary valve, read system pressure on the gauge at the pump head. Check for any leaks, vibration or pressure fluctuations and resume operation.

Inspect and service all system accessories on the same schedule as your pump.
SERVICING THE SEALS

Disassembly

NOTE: All pump models require one (1) seal kit to repair pump. Models 2DX, 2DX.MIST, 3DX, 3DNX, 3SP and 3SPX contain (3) high pressure seals, (3) low pressure seals, (3) seal washers and (3) o-rings. Whereas, model 1DX03ELS.MIST contains (2) high pressure seals, (2) low pressure seals, (2) seal washers and (2) o-rings. The model 1DX015ELS.MIST contains (1) high pressure seal, (1) low pressure seal, (1) seal washer and (1) o-ring.

1. Using an M5 allen wrench, remove the hex socket head (HSH) screws from the face of the manifold head.
2. Insert flat head screwdrivers on each side between the crankcase and manifold head. Gently apply pressure to the head to begin separation.
3. Support the manifold head from the underside and pull the manifold head away from the crankcase.
 CAUTION: Keep the manifold head properly aligned with the ceramic plungers when removing to avoid damage to the plungers.
 NOTE: The seal case may stay in the manifold or on the ceramic plungers.
4. Place manifold head on work surface with crankcase side up.
5. Remove seal retainer from each plunger rod.
6. Use a screwdriver to pry out the Lo-Pressure seal from each seal case.
 CAUTION: Screwdriver may damage seal during removal.
7. Use reverse pliers to remove seal case from each seal chamber.
 NOTE: Insert the reverse pliers into the second lip to avoid damage to the seal case.
8. Carefully insert a small screwdriver under the o-ring and roll the o-ring off each seal case.
 CAUTION: Exercise caution as the screwdriver may score o-ring sealing surface.
9. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: The Hi-Pressure seals can be easily removed from each seal chamber by hand or with reverse pliers.
 Models 3DNX, 3SP and 3SPX: Remove V-Packing and male adapter from each seal chamber by hand or with a reverse pliers.

Reassembly

1. Examine the manifold chamber walls for scale buildup or damage.
2. Examine Hi-Pressure seals or V-Packings for frayed edges or uneven wear and replace as needed.
3. Examine seal case o-rings for cuts or deterioration and replace as needed.
4. Examine Lo-Pressure seals for wear to the internal ridges, outer surfaces for broken springs and replace as needed.
 NOTE: Seals and o-rings are available in seal kits.
5. Examine seal retainers for deformation and replace as needed.
6. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: Lubricate and install new Hi-Pressure seal by hand into each seal chamber with the grooved side down.
 Models 3DNX, 3SP and 3SPX: Install male adapter with notch side down. Lubricate and install new V-Packing by hand into seal chamber with grooved side down.
7. Lubricate and install o-ring on each seal case. Press small end of seal case into each seal chamber.
8. Press new Lo-Pressure seal into each seal case with the garter spring down.
9. Examine ceramic plunger for cracks or scale buildup and proceed to SERVICING THE PLUNGERS if worn.
10. Models 1DX.MIST, 2DX, 2DX.MIST and 3DX: Slide seal retainer over each ceramic plunger with the drain slots facing the crankcase and the openings to the top and bottom. Press into the crankcase.
 Models 3DNX, 3SP and 3SPX: Slide seal retainer over each ceramic plunger with the tabs facing out. Press into the crankcase.
11. Rotate crankshaft by hand so the two outside plungers are extended equally.
12. Lightly lubricate ceramic plungers, then carefully slide the manifold head over the ceramic plungers, supporting it from the underside to avoid damage to the plungers or seals. Press the manifold head up to the crankcase until flush.
13. Thread HSH screws in hand tight. Torque in sequence to specifications in torque chart.
SERVICING THE PLUNGERS

Disassembly
1. To service the ceramic plungers, it is necessary to remove the manifold head. See SERVICING THE SEALS, Disassembly, steps 1-3.
2. Remove seal retainer from each plunger rod.
3. Using a M10 Hex tool, loosen the plunger retainer on each plunger rod approximately three to four turns.
4. Push the ceramic plunger back towards the crankcase to separate from the plunger retainer and proceed with unthreading the plunger retainer by hand.
5. Models 1DX.MIST, 2DX, 2DX.MIST, 3DX, 3DNX and 3SPX: Remove the ceramic plunger and seal washer from each plunger retainer.
 Model 3SP: Remove the ceramic plunger and copper retainer gasket from each plunger retainer.
 NOTE: Copper plunger retainer gasket has been replaced by NBR seal washer.

Reassembly
1. Visually inspect the crankcase oil seals for deterioration or leaks. Contact CAT PUMPS for assistance with replacement. See SERVICING THE CRANKCASE.
2. Examine seal washers and replace if cut or worn.
3. Examine plunger retainers for damaged threads and replace as needed.
4. Install new seal washer onto each plunger retainer.
5. Examine the ceramic plungers for scoring, scale buildup, chips or cracks and replace as needed. The ceramic plungers do not need to be replaced with every seal servicing.
6. Slide plunger retainer with seal washer into flat end of ceramic plunger.
7. Apply Loctite® 242® to exposed threaded end of plunger retainer.
8. Install ceramic plunger with plunger retainer and seal washer over each plunger rod shoulder and thread hand tight. Torque to specifications per chart.
 NOTE: Ceramic Plungers can only be installed in one direction. Counterbore end of ceramic plunger fits over plunger rod shoulder.

TORQUE SEQUENCE

1. While manifold, plungers and retainers are removed, examine crankcase oil seals for leaking and wear.
2. Check for any signs of leaking at bearing cover, drain plug or bubble gauge.
3. Check oil level and for evidence of water in oil. Change crankcase oil on a regular schedule. See PREVENTATIVE MAINTENANCE CHECK-LIST.
4. Rotate crankshaft by hand to feel for smooth bearing movement.
5. Examine crankshaft oil seal externally for drying, cracking or leaking.
6. Contact CAT PUMPS or local distributor if crankcase service is required.

SERVICING THE CRANKCASE

1. While manifold, plungers and retainers are removed, examine crankcase oil seals for leaking and wear.
2. Check for any signs of leaking at bearing cover, drain plug or bubble gauge.
3. Check oil level and for evidence of water in oil. Change crankcase oil on a regular schedule. See PREVENTATIVE MAINTENANCE CHECK-LIST.
4. Rotate crankshaft by hand to feel for smooth bearing movement.
5. Examine crankshaft oil seal externally for drying, cracking or leaking.
6. Contact CAT PUMPS or local distributor if crankcase service is required.
SERVICING THE UNLOADER AND REGULATOR
1DX015ELS.MIST, 1DX03ELS.MIST - Integral Regulator
2DX, 3DX, 3DNX, 3SPX - Integral Unloader
2DX.MIST - Integral Regulator
3SP - 7700 Modular Unloader (refer to individual data sheet)

Disassembly

NOTE: On models 3SP30G1I, 3SP35G1I, 3SPX30G1I and 3SPX35GEI remove black adjusting handle.
1. Remove brass adjusting cap by turning in a counter-clockwise direction.
2. Remove exposed coil spring and flat spring retainer.
3. Use an M19 wrench to remove piston retainer by turning in a counterclockwise direction.
 NOTE: The piston stem and valve assembly may fall out when the piston retainer is removed. If so, proceed to step 6., if not, continue with step 4.
4. Use a needle nose pliers to remove piston stem and valve assembly.
5. Separate piston stem from valve. Secure the valve near the valve retainer. Insert a screwdriver into slotted head of piston stem and unthread from valve.
 CAUTION: Exercise extreme caution to avoid contact and damage to the tapered surface of valve.
6. Examine seat at the bottom of the unloader chamber for grooves, pitting or wear, replace only as needed.
 CAUTION: Seat will be damaged when removed.

Reassembly

1. If seat is worn or damaged, press new seat into unloader chamber until squarely seated.
2. Examine piston stem, washer, valve retainer and valve for grooves, pitting or wear and replace as needed. Examine o-rings and back-up ring for cuts or wear and replace as needed.
3. Lubricate and install o-ring over slotted head of piston stem, then position back-up ring on top of o-ring.
4. Lubricate and install o-rings on valve retainer.
5. Install washer and then valve retainer with o-rings onto piston stem. Apply Loctite® 242® to threads of piston stem and screw valve onto piston stem.
6. Lower complete piston stem and valve assembly into unloader chamber with valve facing downward.
7. Examine piston retainer for damaged threads or wear and replace as needed. Examine o-ring for cuts or wear and replace as needed.
8. Apply Loctite® 242® to threads and then hand thread piston retainer into unloader by turning in a clockwise direction, and then tighten with wrench.
9. Examine spring retainer and coil spring for fatigue or breaks and replace as needed.
10. Place spring retainer into piston retainer, followed by coil spring.
11. Thread brass adjusting cap onto piston retainer by turning in a clockwise direction.

Loctite and 242 are registered trademarks of Henkel Corporation.
INLET CONDITION CHECK-LIST

Review Before Start-Up

Inadequate inlet conditions can cause serious malfunctions in the best designed pump. Surprisingly, the simplest of things can cause the most severe problems or go unnoticed to the unfamiliar or untrained eye. REVIEW THIS CHECK-LIST BEFORE OPERATION OF ANY SYSTEM. Remember, no two systems are alike, so there can be no ONE best way to set-up a system. All factors must be carefully considered.

INLET SUPPLY should exceed the maximum flow being delivered by the pump to assure proper performance.

- Open inlet shut-off valve and turn on water supply to avoid starving the pump. **DO NOT RUN PUMP DRY.**
- Temperatures above 130°F are permissible. Add 1/2 PSI inlet pressure per each degree F over 130°F. Elastomer or RPM changes may be required. See Tech Bulletin 002 or call CAT PUMPS for recommendations.
- Avoid closed loop systems especially with high temperature or ultra-high pressure. Conditions vary with regulating/unloader valve.
- Higher temperature liquids tend to vaporize and require positive heads.
- When using an inlet supply reservoir, size it to provide adequate liquid to accommodate the maximum output of the pump, generally a minimum of 6-10 times the GPM (however, a combination of system factors can change this requirement); provide adequate baffling in the tank to eliminate air bubbles and turbulence; install diffusers on all return lines to the tank.

INLET LINE SIZE should be adequate to avoid starving the pump.

- Line size must be a minimum of one size larger than the pump inlet fitting. Avoid tees, 90 degree elbows or valves in the inlet line of the pump to reduce the risk of flow restriction and cavitation.
- The line **MUST** be a FLEXIBLE hose, NOT a rigid pipe, and reinforced (ideally no elbows) and the inlet accessories to a minimum.
- Use pipe sealant to assure air-tight, positive sealing pipe joints.

INLET PRESSURE should fall within the specifications of the pump.

- Acceleration loss of liquids may be increased by high RPM, high temperatures, low vapor pressures or high viscosity and may require a pressurized inlet to maintain adequate inlet supply.
- Optimum pump performance is obtained with +20 PSI (1.4 BAR) inlet pressure. With adequate inlet plumbing, most pumps will perform with flooded suction. Maximum inlet pressure is 60 PSI (4 BAR).
- After prolonged storage, pump should be rotated by hand and purged of air to facilitate priming. Disconnect the discharge port and allow liquid to pass through pump and measure flow.

INLET ACCESSORIES are designed to protect against over pressurization, control inlet flow, contamination or temperature and provide ease of servicing.

- A shut-off valve is recommended to facilitate maintenance.
- A stand pipe can be used in some applications to help maintain a positive head at the pump inlet line.
- Inspect and clean inlet filters on a regular schedule to avoid flow restriction.
- A pressure transducer is necessary to accurately read inlet pressure. **Short term, intermittent cavitation will not register on a standard pressure transducer.**
- All accessories should be sized to avoid restricting the inlet flow.
- All accessories should be compatible with the solution being pumped to prevent premature failure or malfunction.

BY-PASS TO INLET Care should be exercised when deciding the method of by-pass from control valves.

- The 2DX, 3DX, 3DNX and 3SPX pumps come with an Integral Unloader with built-in by-pass to route by-pass liquid back to the pump inlet. The 3SP pumps come with a Regulating Unloader and reinforced, flexible hose rated up to 300 PSI. No additional by-pass hose is required. The 1DX.MIST and 2DX.MIST pumps come with an Integral Regulator.
FILTER

Water length of line of each valve or fitting. If a sufficient number of valves and fittings are incorporated in the system to contribute to cavitation in a system resulting in premature wear, one or several of the conditions shown in the chart below may contribute to cavitation in a system resulting in premature wear, system downtime and unnecessary operating costs.

CONDITION	**SOLUTION**
Inadequate inlet line size	Increase line size to the inlet port or one size larger
Water hammering liquid acceleration/deacceleration	Install C.A.T. Tube
Rigid Inlet Plumbing	Use flexible wire reinforced hose to absorb pulsation and pressure spikes
Excessive Elbows in Inlet Plumbing	Keep elbows to a minimum and less than 90°
Excessive liquid Temperature	Use Thermo Valve in bypass line
Do not exceed pump temperature specifications	
Substitute closed loop with baffled holding tank	
Adequately size tank for frequent or high volume bypass	
Pressure feed high temperature liquids	
Properly ventilate cabinets and rooms	
Air Leaks in Plumbing	Check all connections
Use PTFE thread tape or pipe thread sealant	
Agitation in Supply Tank	Size tank according to pump output
Minimum 6-10 times system GPM	
Baffle tank to purge air from liquid and separate inlet from discharge	
High Viscosity Liquids	Verify viscosity against pump specifications before operation
Elevate liquid temperature enough to reduce viscosity	
Lower RPM of pump	
Pressure feed pump	
Increase inlet line size	
Clogged Filters	Perform regular maintenance or use clean filters to monitor build up
Use adequate mesh size for liquid and pump specifications	

HOSE FRICTION LOSS

<table>
<thead>
<tr>
<th>Water Flow Gal./Min.</th>
<th>1/4</th>
<th>5/16</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>3/4</th>
<th>1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>20</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>180</td>
<td>60</td>
<td>25</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>380</td>
<td>120</td>
<td>50</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>750</td>
<td>220</td>
<td>90</td>
<td>24</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td>320</td>
<td>130</td>
<td>34</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2200</td>
<td>520</td>
<td>220</td>
<td>52</td>
<td>17</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3200</td>
<td>700</td>
<td>300</td>
<td>80</td>
<td>25</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4500</td>
<td>900</td>
<td>500</td>
<td>120</td>
<td>30</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>9000</td>
<td>1600</td>
<td>1000</td>
<td>240</td>
<td>60</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>16000</td>
<td>3000</td>
<td>2000</td>
<td>400</td>
<td>120</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>25000</td>
<td>5000</td>
<td>3000</td>
<td>600</td>
<td>250</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>30000</td>
<td>6000</td>
<td>4000</td>
<td>900</td>
<td>350</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>40000</td>
<td>8000</td>
<td>6000</td>
<td>1200</td>
<td>500</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>50</td>
<td>50000</td>
<td>10000</td>
<td>10000</td>
<td>1600</td>
<td>800</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>60</td>
<td>60000</td>
<td>12000</td>
<td>12000</td>
<td>2000</td>
<td>1000</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

*At a fixed flow rate with a given size hose, the pressure drop across a given hose length will be directly proportional. A 50 ft. hose will exhibit one-half the pressure drop of a 100 ft. hose. Above values are shown to be valid at all pressure levels.

WATER LINE PRESSURE LOSS

<table>
<thead>
<tr>
<th>Water GPM</th>
<th>Steel Pipe—Nominal Dia. 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2</th>
<th>Brass Pipe—Nominal Dia. 1/4 3/8 1/2 3/4 1 1 1/4 1 1/2</th>
<th>Copper Tubing O.O. Type L 1/4 3/8 1/2 3/4 7/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.5 1.9</td>
<td>6.0 1.6</td>
<td>120 13 2.9 1.0</td>
</tr>
<tr>
<td>2</td>
<td>30 7.0 2.1</td>
<td>20 5.6 1.8</td>
<td>400 45 10 3.4 1.3</td>
</tr>
<tr>
<td>3</td>
<td>60 14 4.5 1.1</td>
<td>40 11 3.6</td>
<td>900 94 20 6.7 2.6</td>
</tr>
<tr>
<td>5</td>
<td>150 36 12.8</td>
<td>100 28 8.0 2.2</td>
<td>230 230 50 17.1 3.0</td>
</tr>
<tr>
<td>8</td>
<td>330 86 28.8 1.9</td>
<td>220 62 21 5.2 1.6</td>
<td>500 500 120 40 15.6 5.6</td>
</tr>
<tr>
<td>12</td>
<td>520 130 30 3.0</td>
<td>320 90 30 7.3 2.4</td>
<td>800 800 200 50 19.8 7.2</td>
</tr>
<tr>
<td>15</td>
<td>270 90 21 1.6 1.6</td>
<td>190 62 15 5.1 1.5</td>
<td>120 120 40 20 14.4 5.5</td>
</tr>
<tr>
<td>25</td>
<td>670 240 56 16.2 5.0</td>
<td>470 150 40 12.3 2.1</td>
<td>330 330 110 50 20 10.8 4.2</td>
</tr>
<tr>
<td>50</td>
<td>6 17 8.0 30</td>
<td>29 11 5.9</td>
<td>550 550 200 88 40</td>
</tr>
<tr>
<td>60</td>
<td>37 17</td>
<td>31 31</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>52 29</td>
<td>40 40</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>210 107 48</td>
<td>61 61</td>
<td>100</td>
</tr>
</tbody>
</table>

RESISTANCE OF VALVES AND FITTINGS

Nominal Pipe Size Inches	Inside Diameter Inches	GATE Valve Angle Valve 45° Elbow Angle Valve 90° Elbow 180° Close Run Tee Thru Run Tee Thru Branch		
1/2	0.622	0.41 18.5	9.3 0.78	1.67 3.71 0.93 3.33
3/4	0.824	0.54 24.5	12.3 1.03	2.21 4.90 1.23 4.41
1	1.049	0.69 31.2	15.6 1.31	2.81 6.25 1.56 5.62
1 1/4	1.380	0.90 41.0	20.5 1.73	3.70 8.22 2.06 7.40
1 1/2	1.610	1.05 48.0	24.0 2.15	4.31 9.59 2.40 8.63
2	2.067	1.35 61.5	30.8 2.59	5.55 12.30 3.08 11.60
2 1/2	2.469	1.62 73.5	36.8 3.09	6.61 14.70 3.68 13.20
3	3.068	2.01 91.5	45.8 3.84	8.23 18.20 4.57 16.40
4	4.026	2.64 120.0	60.0 5.03	10.80 23.90 6.00 21.60

Arriving at a total line pressure loss, consideration should then be given to pressure loss created by valves, fittings and elevation of lines. If a sufficient number of valves and fittings are incorporated in the system to materially affect the total line loss, add to the total line length, the equivalent length of line of each valve or fitting.

TYPICAL RESERVOIR TANK

RECOMMENDED 6 TO 10 TIMES SYSTEM CAPACITY

Handy Formulas to Help You

Q. How can I find the RPM needed to get specific GPM (Gallons Per Minute) I want?
A. Desired RPM = Desired GPM x Rated RPM

Q. I have to run my pump at a certain RPM. How do I figure the GPM I’ll get?
A. Desired GPM = Desired RPM x Rated GPM

Q. Is there a simple way to find the approximate horsepower I’ll need to run the pump?
A. Electric Brake Horsepower Required = \(\frac{GPM \times PSI}{1460} \) (Standard 85% Mech. Efficiency)

Q. What size motor pulley should I use?
A. Pump Pulley (Outer Diameter) x \(\frac{Pump RPM}{Motor/Engine RPM} \) (Consult Engine Mfr.)

Q. How do I calculate the torque for my hydraulic drive system?
A. Torque (ft. lbs.) = 3.6 \(\left(\frac{GPM \times PSI}{RPM} \right) \)

Avoid Cavitation Damage

One or several of the conditions shown in the chart below may contribute to cavitation in a system resulting in premature wear, system downtime and unnecessary operating costs.
One of the most important steps in a high pressure system is to establish a regular maintenance program. This will vary slightly with each system and is determined by various elements such as the duty cycle, the liquid being pumped, the actual specifications vs rated specifications of the pump, the ambient conditions, the inlet conditions and the accessories in the system. A careful review of the necessary inlet conditions and protection devices required before the system is installed will eliminate many potential problems.

CAT PUMPS are very easy pumps to service and require far less frequent service than most pumps. Typically, only common tools are required, making in-field service convenient; however, there are a few custom tools, specially designed for various models, that do simplify the process. This service manual is designed to assist you with the disassembly and reassembly of your pump. The following guide will assist in determining the cause and remedy to various operating conditions. You can also review our FAQ or SERVICE sections on our WEB SITE for more facts or contact CAT PUMPS directly.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>PROBABLE CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pressure</td>
<td>•Worn nozzle. •Air leak in inlet plumbing. •Pressure gauge inoperative or not registering accurately. •Relief valve stuck, partially plugged or improperly adjusted. •Inlet suction strainer (filter) clogged or improperly sized. •Abrasive in pumped liquid. •Leaky discharge hose. •Inadequate liquid supply. •Severe cavitation. •Worn seals. •Worn or dirty inlet/discharge valves.</td>
<td>•Replace with properly sized nozzle. •Tighten fittings and hoses. Use PTFE liquid or tape. •Check with new gauge. Replace worn or damaged gauge. •Clean/adjust relief valve. Replace worn seats/valves and o-rings. •Clean filter. Use adequate size filter. Check more frequently. •Install proper filter. •Replace discharge hose with proper rating for system. •Pressurize inlet and install C.A.T. •Check inlet conditions. •Install new seal kit. Increase frequency of service. •Clean inlet/discharge valves or install new valve kit.</td>
</tr>
<tr>
<td>Pulsation</td>
<td>•Faulty Pulsation Dampener. •Foreign material trapped in inlet/discharge valves.</td>
<td>•Check precharge. If low, recharge, or install a new dampener. •Clean inlet/discharge valves or install new valve kit.</td>
</tr>
<tr>
<td>Water leak</td>
<td>•Under the manifold •Worn V-Packing, Hi-Pressure or Lo-Pressure Seals. •Worn adapter o-rings. •Excessive wear to seals.</td>
<td>•Install new seal kit. Increase frequency of service. •Install new o-rings. •Install new seal kit. Increase frequency of service.</td>
</tr>
<tr>
<td>Knocking noise</td>
<td>•Inlet supply •Bearing •Inadequate inlet liquid supply. •Broken or worn bearing.</td>
<td>•Check liquid supply. Increase line size, pressurize or install C.A.T. •Replace bearing.</td>
</tr>
<tr>
<td>Oil leak</td>
<td></td>
<td>•Replace crankcase oil seals. •Remove bearing cover and replace o-rings and/or oil seals. •Tighten drain plug or replace o-ring. •Tighten bearing cover or replace o-ring. •Tighten filler cap. Fill crankcase to specified capacity.</td>
</tr>
<tr>
<td>Pump runs extremely rough</td>
<td>•Inlet conditions •Pump valves •Pump seals •Restricted inlet or air entering the inlet plumbing •Stuck inlet/discharge valves. •Leaking V-Packing, Hi-Pressure or Lo-Pressure seals.</td>
<td>•Correct inlet size plumbing. Check for air tight seal. •Clean out foreign material or install new valve kit. •Install new seal kit. Increase frequency of service.</td>
</tr>
</tbody>
</table>
| Premature seal failure | •Scored plungers. •Over pressure to inlet manifold. •Abrasive material in the liquid being pumped. •Excessive pressure and/or temperature of pumped liquid. •Running pump dry. •Starving pump of adequate liquid. •Eroded manifold. | •Replace plungers. •Reduce inlet pressure per specifications. •Install proper filtration at pump inlet and clean regularly. •Check pressure and inlet liquid temperature. •DO NOT RUN PUMP WITHOUT LIQUID. •Increase hose one size larger than inlet port size. Pressurize and install C.A.T. •Replace manifold. Check liquid compatibility.